

MSZ

Magnesia-Stabilized Zirconia (MSZ) Ceramic Parts by Ceramforge

At CeramForge, we specialize in manufacturing Magnesia-Stabilized Zirconia (MSZ) ceramic parts, engineered for exceptional toughness, thermal stability, and wear resistance. Our MG PSZ ceramics are stabilized with 3.25 wt% MgO (Magnesia), providing superior resistance to thermal shock and crack propagation, making them ideal for demand- ing industrial applications.

Chemical Composition

Oxide Component	Typical Composition (%)	
ZrO ₂ (Zirconia)	>95.20%	
MgO (Magnesia)	~3.15 to 3.45%	
SiO ₂ (Silica)	<0.2%	
TiO ₂ , Fe ₂ O ₃ , CaO, Al ₂ O ₃ (Trace Oxides)	<0.85%	

Note: These values are approximate and may vary depending on the specific processing and material grade.

APPLICATIONS

Mar Components

- Bearings, bushings, and valve seats
- Wear-resistant liners
- Pump components for corrosive environments
- High-performance structural components
- For Textile Machinery
- For Wire Drawing Machines

MSZ Properties

At CeramForge, we ensure high precision, consis- tency, and durability in our MG PSZ ceramic parts, delivering superior performance across diverse industries. Our state-of-the-art process- ing techniques allow us to meet the most demanding application requirements

Property	Units	MG PSZ
Density	g/cm³	5.65-5.75
Color	-	YELLOW
4-Pt Flexural Strength (MOR), 20° C	МРа	545
Elastic Modulus, 20° C	GPa	200
Compressive Strength, 20° C	МРа	1700
Hardness – Vickers 500gm	kg/mm²	1200
Fracture Toughness, K(I c)	MPa $m^{1/2}$	9.0
Thermal Conductivity	W/mK	2.2
Coef. of Thermal Expansion, 25-1000° C	1 X 10 ⁻⁶ / °C	10.2
Volume Resistivity, 25° C	ohm-cm	>1013
Dielectric Constant, 1 MHz	-	28
Dielectric Loss	-	0.001

Note: These values are approximate and may vary depending on the specific processing and material grade.

KEY PROPERTIES

• High Fracture Toughness (8-12 MPa·m¹/²)

Excellent crack resistance, ideal for impact-prone applications.

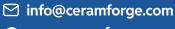
• Superior Wear & Abrasion Resistance

Outperforms alumina and other ceramics in high-friction environments.

• Thermal Stability up to 1200°C

Exceptional resistance to thermal cycling and shock.

• Chemical & Corrosion Resistance


Withstands aggressive environments, including acids and alkalis.

• Low Thermal Conductivity

Ideal for high-temperature insulation applications.

Innovating Ceramics. Advancing Industries.

For Further information, please get in touch with us

